

安徽机电职业技术学院 张新建

第七章 非金属材料

材料的分类:

金属材料

材料

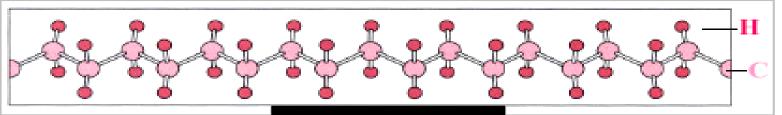
高分子材料:塑料、合成橡胶、合成纤维

无机非金属材料

传统无机非金属材料

新型无机非金属材料

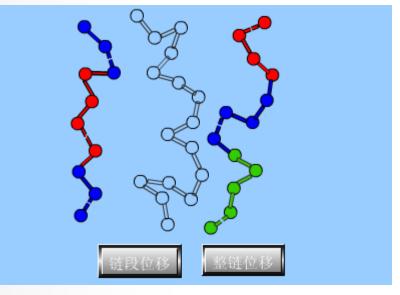
一、高分子材料的基本概念


- ❖ 高分子材料是以高分子化合物为主要组分的材料。常称聚合物或高聚物。
- ❖高分子化合物的分子量一般>104。
- ❖高分子化合物有天然的,也有人工合成的。
 工业用高分子材料主要是人工合成的。

1、高分子化合物的组成

- ❖ 由简单的结构单元重复连接而成。如由乙烯合成聚乙烯可简写成 $_{\text{CH}_2=\text{CH}_2}$ → $_{\text{CH}_2}=\text{CH}_2$ $_{\text{CH}_2}$
 - 组成聚合物的低分子化合物称为单体。
 - 聚合物的分子为很长的链条, 称为大分子链。
 - 大分子链中重复结构单元称为链节

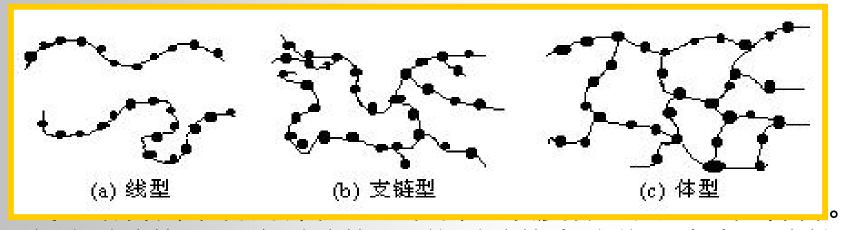
(如聚乙烯中 $+ CH_2-CH_2-_n$)。


聚乙烯分子链

二、高分子材料的结构

2、 大分子链的柔顺性

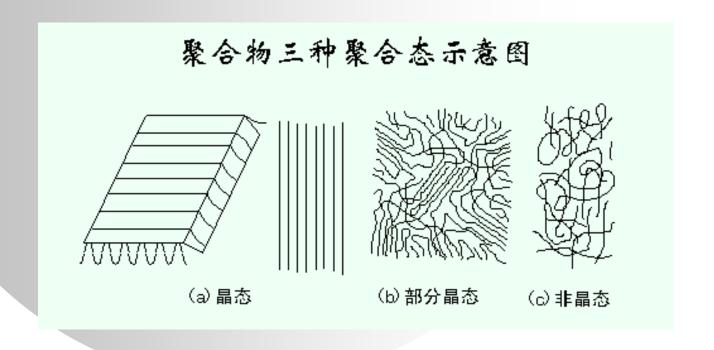
大分子链主链共价键中 的单键可任意旋转,称单键的内旋转。



- 内旋转使大分子链卷曲成各种不同形状这种特性称 为大分子链的柔顺性。
- 柔顺性使得高分子具有能拉伸、回缩的性能,这是 聚合物具有弹性的原因

3、大分子链的形状

按照大分子链的几何形状,可将高分子化合物分为线型结构、支链型结构和体型结构。



支链型结构近于线型结构。体型结构高聚物硬度高,脆性大,无弹性和塑性,是热固性材料。

4、高分子材料的聚集态 高分子材料的聚集状态有三种:晶态、部分晶态和非晶态

- 5、有机高分子材料的性能特点
- 1、和金属材料相比,其力学性能右如下特点:
- (1)比强度高(2)高弹性和低弹性模量(3)粘弹性
- (4) 高耐磨性和低硬度
- 2、有机高分子材料的物理化学性能特点
- (1)绝缘性(2)耐热性(3)耐蚀性(4)老化

二、高分子工程材料

高分子工程材料包括塑料、 合成纤维、橡胶和胶粘剂 等。本节主要介绍工程上 常用的高分子工程材料。

(一)、工程塑料

塑料是在玻璃态下使用的高分子材料。在一定温度、压力下可塑制成型,在常温下能保持其形状不变。

- 1、工程塑料概述
- (1) 塑料的组成

塑料是以树脂为主要成分,加入各种添加剂。 树脂是塑料的主要成分, 对塑料性能起决定性作用。

- ❖ 添加剂是为改善塑料某些性能而加入的物质。
- ❖ 填料主要起增强作用;
- ❖ 增塑剂用于提高树脂的可塑性和柔软性;
- ❖ 固化剂用于使热固性树脂由线型结构转变为体型结构;
- ❖ 稳定剂用于防止塑料老化,延长其使用寿命;
- ❖ 润滑剂用于防止塑料加工时粘在模具上, 使制品光亮;
- ❖ 着色剂用于塑料制品着色。
- ❖ 其他的还有发泡剂、催化剂、 阻燃剂、抗静电剂等。

(2) 塑料的分类

- ❖ 按树脂受热时行为可分为热塑性塑料和热固性塑料。
- ❖ 按使用范围可分为通用塑料、工程塑料和特种塑料。
- ❖ 通用塑料产量大、价格低、用途广。
- ❖ 工程塑料力学性能高,耐热、耐蚀性能好。

特种塑料是指具有某些特殊 性能如耐高温、耐腐蚀的塑料, 这类塑料产量少,价格贵,只用 于特殊需要的场合。

- 2、常用工程塑料
- (1) 一般结构用塑料
- ❖包括聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)、 聚丙烯(PP)和ABS塑料等。
- ❖ 聚丙烯具有优良的综合性能,可制造各种机械零件。
- ❖ ABS塑料 "坚韧、质硬、刚性",应用广泛。

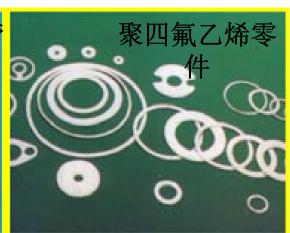
- (2) 摩擦传动零件用塑料
- 包括聚酰胺(PA)、聚甲醛(POM)、 聚碳酸酯(PC)、聚四氟乙烯 (PTFE)等。

聚酰胺又称尼龙或绵纶,强度较高,耐磨、自润滑性好,广泛用作机械、化工及电气零件。

聚甲醛具有优良的综合性能,广 泛用于汽车机床、化工、电气仪 表、农机等工业。

聚碳酸酯具有优良的机械性

能,透明无毒,应用广泛。



聚四氟乙烯俗称"塑料王",具有极优越的化学稳定性和热稳定性以及优越的电性能,几乎不受任何化学药品的腐蚀,摩擦系数极低,只有0.04。缺点是强度低、加工性差。主要用于减摩密封件、化工耐蚀件与热交换器以及高频或潮湿条件下的绝缘材料。

- (3) 耐蚀用塑料
- ❖ 耐蚀用塑料主要有聚四氟乙烯、 氯化聚醚(PENTON)、聚丙烯等。
- ❖ 氯化聚醚的化学稳定性仅次于聚四氟乙烯,但工艺性比聚四氟乙烯,6年代学工业和机格好,成本低。在化学工业和机电工业获得广泛应用,如化工设备零件、管道、衬里等。

氯化聚醚防腐蝶阀

第一节。高分子材料

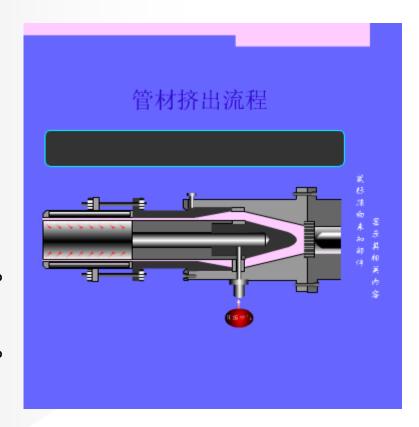
- 4) 耐高温件用塑料
- ❖ 有聚砜(PSF)、聚苯醚(PP0)、聚 酰亚胺(PI)及氟塑料等。
- ❖ 聚砜的热稳定性高是其最突出的特点。使用温度达150-174℃。 用于机械设备等工业。

- 聚苯醚具有良好的综合性能,用于机电等方面。
- 聚酰亚胺在260℃下可长期使用。主要用于特殊条件下使用的精密零件。

热固性塑料

- ❖热固性塑料是在树脂中加入固化剂压制成型而形成的体形聚合物。
- ❖酚醛塑料是以酚醛树脂为基,加入填料及其他添加剂而制成。广泛用于制作各种电讯器材和电木制品(如插座、开关等),耐热绝缘部件及各种

结构件。



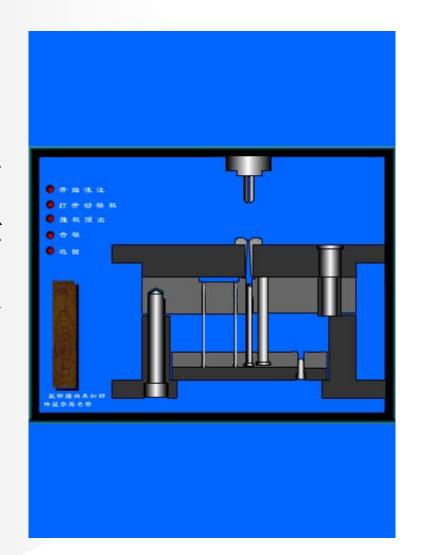
(3) 塑料成形工艺简介

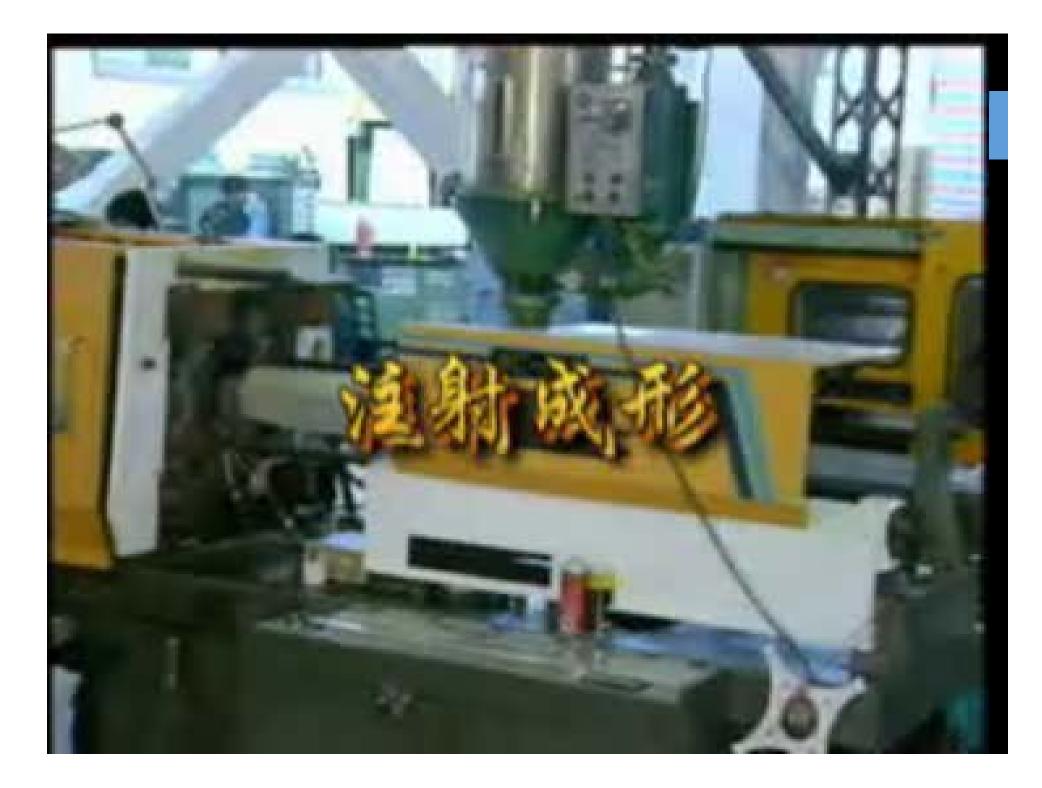
1)挤出成形

此法的优点是生产效率高、用途广、适应性强。 目前挤压制品约占热塑制品生产的40%~50%。

2) 吹塑成形

吹塑成形是将挤 出或注射成形的塑料 管坯(型坯),趁热于 熔融状态时,置于各 种形状的模具中,并 及时向管坯内通入压 缩空气将其吹胀,让 坯料紧贴模胆而成 形,冷却脱模后即得 中空制品,如图所示。

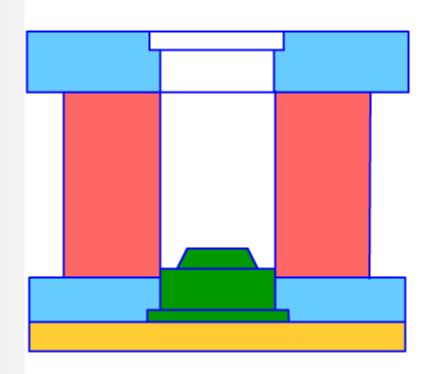




3)注射成形

该法又称注塑。熔 融塑料在流动状态下,用 螺杆或柱塞将其通过料筒 前端的喷嘴,快速注入温 度较低的模型,经过短时 冷却定形,即得塑料制品 的一种重要成形方法,如 图所示。

该工艺生产周期短,适应性强。



4)压制成形

压制成形是利用压力 将置于模具内的粉料压 紧至结构紧密,称为具 有一定形状和尺寸的坯 体的成形方法。

主要用于热固性塑料制品的生产,有模压 法和口模压法,其特点 是:视频尺寸范围宽,

可压制较大的制品,设备简单,工艺条件容易控制。

5) 旋转模塑成型

成型时,将塑料粉末加入到模具中,然后加热后加热点,然后加热后加热点,然后加强的人类的,模具的相连续旋转,模具的相连,对地涂布。然后,形成所需要的形式。

三、合成橡胶

(一)、橡胶的特性

橡胶是一种具有极高弹性的高分子材料,其弹性变形量可达 100%~1000%,而且回弹性好,回弹速度快。同时,橡胶还有一 定的耐磨性,很好的绝缘性和不透气、不透水性。它是常用的弹 性材料、密封材料、减震防震材料和传动材料。

橡胶最大的特点是高弹性。橡胶有储能、耐磨、隔音、绝缘等性能。

橡胶制品──

❖橡胶是以高分子化合物为基础的具有高弹性的材料。

(二)、橡胶的组成和性能特点

❖工业用橡胶由生胶和橡胶配合剂组成。生胶 无配合剂并未经硫化。橡胶配合剂有硫化剂、 硫化促进剂、防老剂、软化剂、填充剂、发 泡剂、着色剂等。

(三)、常用的橡胶

1、通用橡胶

- ①丁苯橡胶 是以丁二烯和苯乙烯为单体共聚而成。具有较好的耐磨性、耐热性、耐老化性,价格便宜。主要用于制造轮胎、胶带、胶管及生活用品。
- ②顺丁橡胶 是由丁二烯聚合而成。顺丁橡胶的弹性、耐磨性、耐热性、耐寒性均优于天然橡胶,是制造轮胎的优良材料。缺点是强度较低、加工性能差。主要用于制造轮胎、胶带、弹簧、减震器、耐热胶管、电绝缘制品等。(3) 氯丁橡胶 是由氯丁二烯聚合而成。

- 2、特种橡胶
- ①丁腈橡胶 以其优异的耐油性著称。
- ②硅橡胶 硅橡胶的性能特点是耐高温和低温。
- ③氟橡胶 它是以碳原子为主链、含有氟原子的高聚物。

第二节 陶瓷材料

一、普通陶瓷制备过程:

陶瓷的原料通常是由粘土、石英和长石三部分组成。在加热烧成或烧结和冷却过程中,由这三部分组成的坯料相继发生四个阶段的变化:

- (1) 低温阶段: (室温~300℃)残余水分的排除。
- (2) 分解及氧化阶段: (300~950℃) 有机物、碳素和无机物等的氧化; 碳酸盐、硫化物等的分解; 石英晶型转变。

- (3) 高温阶段: (950℃~烧成温度)氧化、分解 反应继续进行;相继出现共熔体等液相,各组 成物逐渐溶解;一次莫来石(3A1203-2Si02)晶 体生成;二次莫来石晶体长大;石英块溶解 成残留小块;发生烧结成瓷。
- (4) 冷却阶段: (烧成温度~室温) 二次莫来石晶体析出或长大; 液相转变; 残留石英晶型转变。

- 二、陶瓷的典型组织结构:晶体相(莫来石和石英)、玻璃相和气相
- ❖ 1、晶体相晶体相是陶瓷的主要组成相:主要有硅酸盐、氧化物和非氧化物等。它们的结构、数量、形态和分布,决定陶瓷的主要性能和应用。
- ❖ (1) 硅酸盐 普通陶瓷的主要原料,陶瓷组织中重要的晶体相,结合键为离子键与共价键的混合键。
- ❖ (2)氧化物 多数陶瓷特别是特种陶瓷的主要组成和晶体相,离子键结合,也有共价键。
- ❖ (3) 非氧化合物 不含氧的金属碳化物、氮化物、硼化物和硅化物;特种陶瓷特别是金属陶瓷的主要组成和晶体相。

2、 玻璃相

玻璃相作用:

- ①粘连晶体相,填充晶体相间空隙,提高材料致密度;
- ②降低烧成温度,加快烧结;
- ③阻止晶体转变,抑制其长大;
- ④获得透光性等玻璃特性;
- ⑤不能成为陶瓷的主导相

玻璃相成分: 氧化硅和其它氧化物

3、气相气相是陶瓷内部残留的孔洞;成因复杂,影响因素多。气孔对陶瓷的性能不利(多孔陶瓷除外)

三、陶瓷材料的性能

- 1、陶瓷的机械性能
- (1) 刚度: 陶瓷刚度(由弹性模量衡量)各类材料中最高,因为陶瓷具有很强的化学键。
- (2) 硬度:陶瓷硬度是各类材料中最高的,因其结合键强度高。陶瓷硬度为1000HV~5000HV,淬火钢为500HV~800HV,高聚物最硬不超过20HV。

- (3) 强度: 晶界使陶瓷实际强度比理论值低得多(1/1000~1/100)。
- (4) 塑性:陶瓷在室温下几乎没有塑性。陶瓷晶体滑移系很少,位错运动所需切应力很大;
- (5) 初性: 非常典型的脆性材料: 冲击韧性10kJ/m2以下, 断裂韧性值很低。
- 2、陶瓷的物理和化学性能
 - (1)热膨胀性能
 - (2) 导热性
 - (3) 热稳定性
 - (4)化学稳定性
 - (5) 导电性

四、常用的工程结构陶瓷

1、普通日用陶瓷

特点: 作日用器皿和瓷器,

良好光泽度、透明度, 热稳

定性和机械强度较高。

分类: 长石质瓷、绢云母质

瓷、骨质瓷和滑石质瓷。

2、普通工业陶瓷

工业陶瓷按用途分为:

(1)建筑卫生瓷(2)化学化工瓷(3)电工瓷

3、特种陶瓷

特点:熔点大多2000℃以上,烧成温度约1800℃;单相多晶体结构,有时有少量气相;强度随温度的升高而降低,在1000℃以下时一直保持较高强度,随温度变化不大;纯氧化物陶瓷任何高温下都不会氧化。

(1). 氧化铝(刚玉)陶瓷

- ❖ 结构特点: 02-排成密排六方结构, A13+占据间隙位置。
- ❖ 性能特点及应用:熔点达2050℃,抗氧化性好,广泛用于耐火材料;热 电偶套管等;可作要求高的工具如切削淬火钢刀具、金属拔丝模等。是 很好的高温耐火结构材料,如可作内燃机火花塞。单晶体氧化铝可做蓝 宝石激光器。
- (2). 氧化铍陶瓷
- (3). 氧化锆陶瓷
- (4). 氧化镁 / 钙陶瓷
- (5). 氧化钍/铀陶瓷

一、概述

将两种或两种以上不同性质的材料,经人工复合而成的新材料称为复合材料。

二、复合原则

- 1、纤维增强复合材料中,纤维是受载的主体,基体受力较小,因此纤维应比基体高的强度和模量。
- 2、纤维与基体间要有良好的结合力,以使载荷可通过基体传递给纤维。

- 3、纤维的含量、尺寸、和形态分布。
- 4、对基体的要求:有良好的塑性和韧度,可以抑制裂纹的发展。对纤维有浸润作用,以提高结合力,并起保护纤维表面的作用。热膨胀系数要与纤维相近。

三、复合材料的性能特点:

- 1、比强度大、比模量高
- 2、良好的抗疲劳性能
- 3、优良的高温性能
- 4、良好的断裂安全性
- 5、良好的减震性

四、复合材料的分类

按基体分类:

非金属基复合材料:塑料基复合材料、橡胶基复合材料、陶瓷基复合材料。

金属基复合材料: 铝基复合材料、铜基复合材料。

按增强相的形态分类:

纤维增强复合材料:纤维增强橡胶

颗粒增强复合材料:金属陶瓷

层叠复合材料:钢-巴氏合金。

五、常用的复合材料

1、热固性玻璃钢

分类: 酚醛树脂、环氧树脂、聚酯树脂 和有机硅树脂等。

特点: 优点成形工艺简单、质量轻、比强度高、耐蚀性能好

缺点弹性模量低(1/5~1/10结构钢)、耐热度低(≤250℃)、易老化。

用途: 机器护罩、车辆车身、绝缘抗磁 仪表、耐蚀耐压容器

- 2、热塑性玻璃钢
- ❖ 分类: 以热塑性树脂为粘接剂的玻璃纤维增强材料, 如尼龙、ABS、聚苯乙烯等。
- ❖特点:强度不如热固性玻璃钢,但成形性好、生产率高,且比强度不低。
- ❖ 用途: 尼龙66玻璃钢刚度、强度、减摩性好,作轴承、轴承架、齿轮等精密件、电工件、汽车仪表、前后灯等ABS玻璃钢化工装置、管道、容器等聚苯乙烯玻璃钢汽车内装、收音机机壳、空调叶片等聚碳酸酯玻璃钢耐磨、绝缘仪表等。

